

GOVERNMENT OF WESTERN AUSTRALIA

Trial design, implementation and analysis

Julie Roche, Steve Cosh & Andrew van Burgel DPIRD 2022 **Workshop outline**

Section 1 – Design

Section 2 – Site selection

Section 3 – Analysis

Section 4 – Presenting results

Department of Primary Industries and Regional Development

GOVERNMENT OF WESTERN AUSTRALIA

Trial Design

Andrew van Burgel

Applied Statistician / Biometrician

2022

About myself

- Biometrician or Applied Statistician.
- Working in this role since 2003
- Honours degree in Statistics from UWA
- Based in Albany, but assist research across WA
- Mostly cropping research, but also livestock, horticulture, ...
- Two colleagues in our Perth office: Karyn Reeves and Rebecca O'Leary
- Also collaborate with SAGI (Statistics for the Australian Grains Industry) funded by GRDC.

A successful research trial has many aspects...

Some we wont be expanding on today:

- Defining clearly the research question
- Finding out what <u>others have done</u>
- Choosing an appropriate set of <u>treatments</u>
- Deciding what you are going to measure

Others we will be exploring today:

- Trial design, especially including replication of all treatments
- Selecting a suitable location and implementing the trial well
- Appropriate statistical analysis
- Sound presentation of results

Why bother with a design?

Why not just try a treatment and see if it works?

- The results we observe include both:
 - <u>Treatment effect</u>
 - Other effects (error / variation)
- Treatment A may have given a higher result because of other factors while Treatment A actually has no positive effect.

• Conclusions should be reached only if we have high confidence the results we observe are due to treatment effects and not error / variation.

Variation

Variation is present in all trials

- environmental variation (soil, water, tree vigour, etc)
- sampling, operator and mechanical error/variation

Variation Example 1 (Horticulture)

<u>% of fruit rejected due to wind blemish based on 100 fruit sampled on each of 10 trees</u>

Variation Example 2 (Cropping)

Control yields (every 2nd plot in this trial)

Differences between consecutive control plots (2010 wheat trials, 12 farms, 50 differences)

Variation Example 3 (Livestock)

• Variation in growth from animals receiving the same feed treatment

Assume no replication

There is no way to tell if the difference is due to treatment or something else!

• It could be a 'once-off'.

Average results from all 13 reps: Untreated 3.4 t/ha vs Seed treated 3.4 t/ha

No difference!

Replication

Benefits of Replication

- gives confidence that our treatment effect is not a "once-off" or due to other factors
- greater accuracy to the size of the treatment effect
- gives a measure of background variability
 - essential for a statistical analysis to determine if we have high confidence the treatment effect is real

If you don't have resources to replicate, I would consider not doing the trial due to the high risk of coming to a wrong conclusion.

Replication

Results from a 10 rep trial

- Average difference is very small (<1%) and not significant
- If only 1 rep was done (eg. Rep 5 or 6) a wrong conclusion could easily be reached.

True and false replication – Example 1

Control		Treatment	
x	x	x	x
x	x	x	x
x	x	x	x
x	x	x	x
x	x	x	x

False replication

С	Т	С	Т	С	Т	С	Т

True replication

True and false replication – Example 2

- 2 treatments (* = tree with **net**, * = tree without net)
- single row of trees

<u>Good design</u> (tru	e replication)			
<u>rep 1 rep 2</u>	rep 3rep 4	rep 5	<u>rep 6</u> .	
* * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * *	* * * * * * *	

Poor design (false replication)	
* * * * * * * * * * * * * * * * * * * *	

How many treatments and reps?

Minimum of 2 reps by 3 treatments

 eg. with 2 reps, may need treatments to be different by about 0.5 t/ha (in a high yielding environment) to have high confidence (95%) the difference is real.

More reps is better

• gives greater confidence in the results and less risk of wrong or inconclusive results

How about only one strip of each treatment?

- could have replication at say 200m intervals down the strip
- risk is that variation/error impacting the whole strip (e.g. wind, harvest width) appears as treatment effects.
- also limits the ability to analyse zones

Trial design

Poor design:

- 1. treatments comparison may not be valid
- 2. usually can't be fixed by clever analysis
- 3. can give wrong conclusions:

Real Treatment Effect	Conclusion from Experiment	Industry impact
Yes	No	Lost opportunity
No	Yes	Extra cost for no benefit

Design is a very important step!

• Recommend: careful planning and biometrician input.

Design

Examples where the design could be improved:

4 lime rates by 3 application methods (M1, M2, M3)

Raised bed and control treatments

Take Home Messages

- There is always variation/error
- A good design includes true replication, a minimum of 2 reps of all treatments

Questions...

Thank you Visit dpird.wa.gov.au

Important disclaimer

The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. © State of Western Australia 2018