

Department of Primary Industries and Regional Development

GOVERNMENT OF WESTERN AUSTRALIA

Presenting Trial Results

Andrew van Burgel

Applied Statistician / Biometrician

2022

Example

Consider this trial:

- 5 crops were evaluated as a green manure (GM) with 3 GM methods.
- It was a split plot design with crop type as whole plot.
- Response variable is yield from wheat sown the following year.

		Yield	Yield	Yield
Crop!	GM!	Rep 1	Rep 2	Rep 3
CANOLA	PLOUGH	1.95	1.69	1.72
CANOLA	SLASH	1.81	1.99	1.54
CANOLA	SPRAY	1.67	1.39	1.45
FIELD PEAS	PLOUGH	2.18	2.00	2.31
FIELD PEAS	SLASH	2.30	2.18	2.07
FIELD PEAS	SPRAY	1.99	2.01	2.07
MUSTARD	PLOUGH	1.59	1.69	2.07
MUSTARD	SLASH	1.86	1.74	1.95
MUSTARD	SPRAY	1.58	1.63	1.83
OATS	PLOUGH	1.60	1.60	1.52
OATS	SLASH	1.68	1.75	1.27
OATS	SPRAY	1.66	1.53	1.37
VETCH	PLOUGH	1.90	1.97	1.76
VETCH	SLASH	1.80	1.85	2.01
VETCH	SPRAY	1.67	1.71	1.94

Analysis results

Output from Genstat:

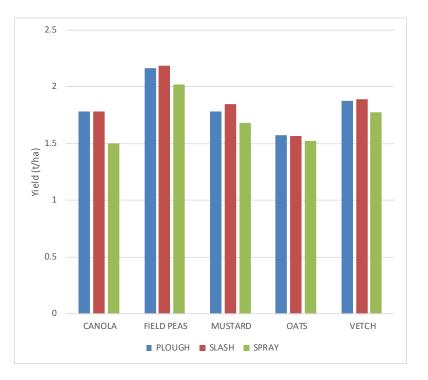
• How would you summarise the results graphically for a paper or presentation?

Analysis of variance

Source of variation	d.f.	S.S.	m.s.	v.r.	F pr.
Rep.Crop stratum Crop Residual	4 10	1.62141 0.38801	0.40535 0.03880	10.45 2.36	0.001
Rep.Crop.GM stratum GM Crop.GM Residual	2 8 20	0.21264 0.06375 0.32880	0.10632 0.00797 0.01644	6.47 0.48	0.007 0.853
Total	44	2.61461			
Tables of means					
Crop CANOLA 1.689	FIELD PEAS 2.123	MUSTARD 1.771	OATS 1.554		TCH .846
GM PLOUGH 1.837		PRAY 1.700			
Crop GM CANOLA FIELD PEAS MUSTARD OATS VETCH	PLOUGH 1.785 2.165 1.783 1.575 1.877	SLASH S 1.780 2.182 1.849 1.566 1.886	PRAY 1.501 2.021 1.681 1.521 1.775		
Standard errors of means Table Crop GM Crop					
e.s.e. Except when comparing me Crop	0.0657 eans with the sa	0.0331 ame level(s) o	GM 0.0892 f 0.0740		
Standard errors of differences of means					
Table	Crop	GM	Crop GM		
s.e.d. Except when comparing me	0.0929 eans with the sa	0.0468 ame level(s) o	0.1262		

Least significant	differences	of means	(5%)	level)

0.1047


Crop

Louor orginitourit u			• •••••
Table	Crop	GM	Crop
			GM
l.s.d.	0.2069	0.0977	0.2599
Except when comparing means with the same level(s) of			
Crop			0.2184

Interaction

Given that the interaction is <u>not significant</u> (and not even close at p=0.853), I would <u>not</u> present all treatment means as below:

- The risk is that readers/ viewers will make conclusions from the non-significant results
 - eg. based on the LSD (~0.22) yields are significantly lower with spray for Canola only.
- Instead I would focus on the significant main effects

Different approach for different situations

In general...

If the interaction is statistically significant

• Focus on the interaction effect

If the interaction is not statistically significant

• Focus on the main effects

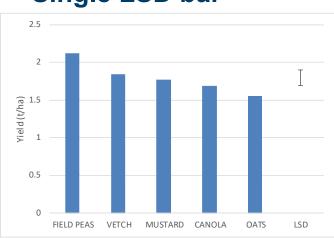
But... there are exceptions...

Interaction is close to significant and is meaningful

• Focus on the interaction effect

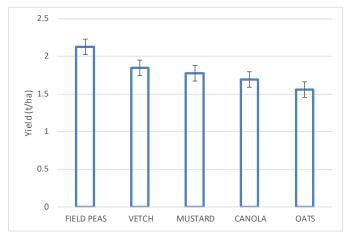
Interaction is significant but relatively small

• Focus on the main effects

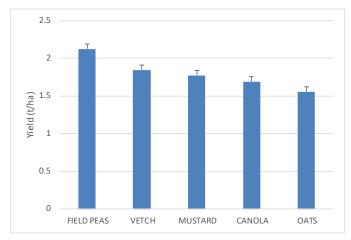

Graphing the main effect

Consider the crop type main effect:

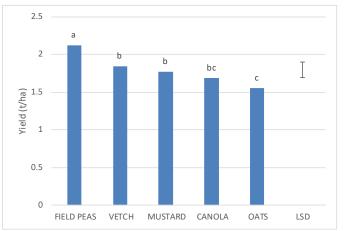
- CANOLA 1.689
- FIELD PEAS 2.123
- MUSTARD 1.771
- OATS 1.554
- VETCH 1.846
- Statistical results: SE = 0.0657; SED = 0.0929; LSD = 0.2069; p = 0.001


How would you graph these crop type means?

Some options



Single LSD bar


+/- SED or +/- half-LSD bars

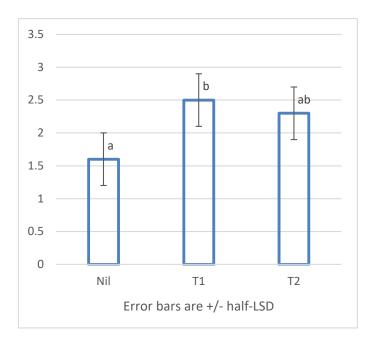
• SE bars

Significance lettering

Treatments sharing no common letters are significantly different (p<0.05)

Demonstration

• How to produce such a graph in Excel...

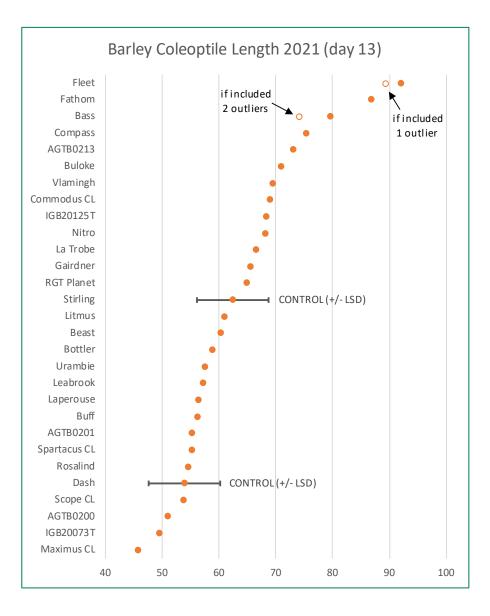

• Note: more powerful tools (eg. ggplot in R) can produce more elegant looking graphs, but additional learning and effort is required.

Significance traps

- p<0.05 should not be applied strictly.
 - p=0.08 is not the same as p=0.80.

Suggestion: quote exact p-values, rather than p<0.05, p>0.05

 If the effect of treatment 1 (T1) is significantly different to the Nil, but the effect of treatment 2 (T2) is not significantly different to the Nil, this does not imply T1 is significantly better than T2.



- "Statistical significance" is different to the more common meaning of significance (importance)
 - 1. An effect can be statistically significant but not significant
 - · if the effect is too small to be important
 - 2. An effect can be significant but not statistically significant
 - if the effect is large, but there is high variability

Suggestion: use "statistically significant" instead of just "significant" when describing statistical significance.

Other graphing tips

- Transpose the usual x and y axes if many groups and/or long group names
- Gridlines helpful visual aid
- Text on the graph is quicker to interpret compared to legends or captions.

- Avoid presenting any results that are not even close to statistically significant.
- In most cases include some statistical information (e.g. LSD) to enable valid comparison of treatment means.
- If including error bars, make sure you define what they represent. Are they SE, SED, LSD, half-LSD, etc.

* Questions

Thank you Visit dpird.wa.gov.au

Important disclaimer

The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. © State of Western Australia 2018