

Department of Primary Industries and Regional Development



| Protect | Grow | Innovate

#### Role of legumes in increasing farming systems profitability and longevity of benefits following soil amelioration

George Mwenda, Andrew Blake, Catherine Borger, Carla Wilkinson, Sud Kharel, Wayne Parker & Stephen Davies

Grains Industry Day 2023

george.mwenda@dpird.wa.gov.au







#### **Deep tillage vs weeds**

|                | Weed density (pl/m <sup>2</sup> ) |                 |                |                       |  |                            |
|----------------|-----------------------------------|-----------------|----------------|-----------------------|--|----------------------------|
| Treatment      | Yerecoin                          |                 | Darkan         |                       |  |                            |
|                | 2019                              | 2020            | 2019           | 2020                  |  | Weed control               |
|                | (wheat)                           | (barley)        | (wheat)        | (barley)              |  |                            |
| No-Till        | 54 <sup>c</sup>                   | 27 <sup>b</sup> | 4 <sup>b</sup> | 5 <sup>b</sup>        |  |                            |
| Deep Ripping   | 86 <sup>d</sup>                   | 41 <sup>b</sup> | 5 <sup>b</sup> | 4 <sup>b</sup>        |  |                            |
| Soil Mixing    | 27 <sup>b</sup>                   | 15 <sup>b</sup> | 6 <sup>b</sup> | <b>7</b> <sup>b</sup> |  | Inconsistent; transient    |
| Soil Inversion | 0 <sup>a</sup>                    | 0 <sup>a</sup>  | 0 <sup>a</sup> | 0 <sup>a</sup>        |  | Consistent; longer lasting |

#### Deep tillage vs soilborne pests and pathogens



Same as no-till

Higher than no-till

Source: Wilkinson et al, manuscript in preparation

## **Crop sequencing after soil amelioration**



- Gravelly yellow sandy earth
- Deep ripped (with some mixing) in July 2019
- Rotation trial commenced in 2020



- Deep yellow sand
- Spaded in 2020
- Rotation trial commenced in 2020

#### Mingenew

### **Crop sequences**







|      | 1              | 2               | 3    | 4    | 5    | 6    | 7                         | 8                         |
|------|----------------|-----------------|------|------|------|------|---------------------------|---------------------------|
|      | Cont.<br>Wheat | Cont.<br>Cereal | LWLW | CWCW | LWCW | CWLW | LCWW<br>(double<br>break) | CLWW<br>(double<br>break) |
| 2020 | W              | W               | L    | С    | L    | С    | L                         | С                         |
| 2021 | W              | W               | W    | W    | W    | W    | С                         | L                         |
| 2022 | W              | В               | L    | С    | С    | L    | W                         | W                         |
| 2023 | W              | W               | W    | W    | W    | W    | W                         | W                         |

• Only four of eight rotations presented today

#### Weeds

|          | Annual ryegrass density (pl/m2) |                         |                   |                  |                   |      |                  |                   |  |
|----------|---------------------------------|-------------------------|-------------------|------------------|-------------------|------|------------------|-------------------|--|
|          |                                 | Meck                    | ering             |                  | Mingenew          |      |                  |                   |  |
| Rotation | 2020                            | 2021                    | 2022              | 2023             | 2020              | 2021 | 2022             | 2023              |  |
| wwww     | 0.5ª                            | <b>0.2</b> ª            | 0.9ª              | 0.0ª             | 5.1ª              | -    | <b>2.2</b> ª     | 2.7 <sup>a</sup>  |  |
| LWLW     | 2.3 <sup>ab</sup>               | 12.1 <sup>b</sup>       | 14.7 <sup>b</sup> | 7.7 <sup>b</sup> | 3.1ª              | -    | 6.8 <sup>b</sup> | 14.1 <sup>b</sup> |  |
| cwcw     | 3.6 <sup>b</sup>                | 1.1ª                    | 1.5ª              | <b>0.8</b> ª     | 29.3 <sup>b</sup> | -    | 1.0ª             | 9.1 <sup>b</sup>  |  |
| CLWW     | 2.6 <sup>b</sup>                | <b>4.4</b> <sup>a</sup> | <b>1.4</b> ª      | <b>2.1</b> ª     | 24.9 <sup>b</sup> | _    | 4.2 <sup>b</sup> | 13.0 <sup>b</sup> |  |

- Continuous wheat maintained low weed densities
- Increased weeds in the lupin phase

### Rhizoctonia solani AG8



- Continuous wheat medium to high risk of disease
- Lupin and canola lowered disease risk at Meckering
- Lupin and canola did not have a similar effect at Mingenew due to grass weeds

#### Meckering

Mingenew

### Pratylenchus neglectus (RLN)



- Continuous wheat medium to high risk of yield loss
- Canola slightly lowered disease risk
- Lupin the most effective at suppressing RLN

Meckering

Mingenew

## **Grain yield**

wheat

|           |          | Grain yield (t/ha) |      |      |      |  |  |
|-----------|----------|--------------------|------|------|------|--|--|
| Site      | Rotation | 2020               | 2021 | 2022 | 2023 |  |  |
|           | CLWW     | 2.4                | 3.6  | 4.9  | 3.7  |  |  |
| Magkaring | WWWW     | 5.4                | 4.8  | 6.0  | 2.8  |  |  |
| мескения  | CWCW     | 2.3                | 6.1  | 1.8  | 3.7  |  |  |
|           | LWLW     | 2.3                | 6.9  | 2.8  | 3.9  |  |  |
|           | CLWW     | 1.7                | 2.8  | 2.6  | 1.2  |  |  |
| Mingonour | WWWW     | 3.9                | 1.7  | 1.4  | 1.0  |  |  |
| wingenew  | CWCW     | 1.7                | 2.4  | 0.9  | 1.3  |  |  |
|           | LWLW     | 3.5                | 2.9  | 2.5  | 1.5  |  |  |

canola

lupin

- Wheat grain yield after canola was 33% higher than after wheat
- Wheat after lupin yielded 52% higher than after wheat
- Wheat after lupin yielded 16% higher than after canola
  - $\circ$  reduced root disease inoculum
  - $_{\odot}$  increased soil N supply from the legume.

### **Gross margins**

|           |          | G    |      |      |      |         |   |
|-----------|----------|------|------|------|------|---------|---|
| Site      | Rotation | 2020 | 2021 | 2022 | 2023 | NPV(\$) |   |
| Meckering | WWWW     | 1    | 4    | 2    | 4    | 3200    | 2 |
|           | LWLW     | 4    | 1    | 3    | 1    | 3100    | 3 |
|           | CWCW     | 3    | 2    | 4    | 3    | 3000    | 4 |
|           | CLWW     | 2    | 3    | 1    | 2    | 3600    | 1 |
|           |          |      |      |      |      | 1       | - |
| Mingenew  | WWWW     | 2    | 4    | 3    | 4    | 1200    | 3 |
|           | LWLW     | 1    | 2    | 1    | 1    | 2000    | 1 |
|           | CWCW     | 3    | 3    | 4    | 2    | 1200    | 3 |
|           | CLWW     | 4    | 1    | 2    | 3    | 1700    | 2 |

wheat

canola

lupin

NB: based on 10-year average prices

### Conclusion

#### Strategic deep tillage

#### **Physicochemical constraints**

**Profitability** 

- Water repellence
- Subsoil compaction
- Subsoil acidity



### Acknowledgements

- DPIRD and GRDC for investment into DAW 1901-006RTX -Increasing farming system profitability and longevity of benefits following soil amelioration
- Host growers Darren Morrell, Murray Preston, Russell Prowse, Todd Duggan
- DPIRD staff –Andrew Blake, Ranny Wilkins, Melanie Kupsch, Erin Hampson, Aman Kaur, Deb Barker, Kanch Wickramarachchi, Sarah Collins, Daniel Huberli, Sean Kelly, Mengistu Yadete, Sultan Mia, Andrew Van Burgel, and Northam, Geraldton and Wongan Hills RSU

# Thank you

dpird.wa.gov.au 🚯 🖸 庙 🖸

#### Important disclaimer

The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Copyright © State of Western Australia (Department of Primary Industries and Regional Development), 2023.