

Department of Primary Industries and Regional Development

Protect Grow Innovate

Strategies to reduce herbicide damage after strategic deep tillage

Tom Edwards, Stephen Davies, Andrew Blake, Ben Arthur, Ron Yates, Mick Rose, John Howieson, Graham O'Hara, Emma Steele & David Hall

GRDC DPIRD project DAW1901_006RTX Increasing farming system profitability and longevity of benefits following soil amelioration

Take Home Messages

Mouldboarding and spading can increase the risk of pre-emergent herbicide damage

Difficult to generalise but can identify factors that increase risk:

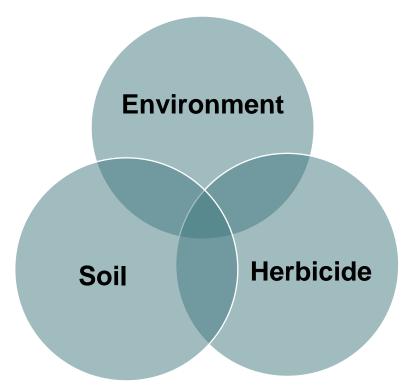
1) Soil composition change post-tillage

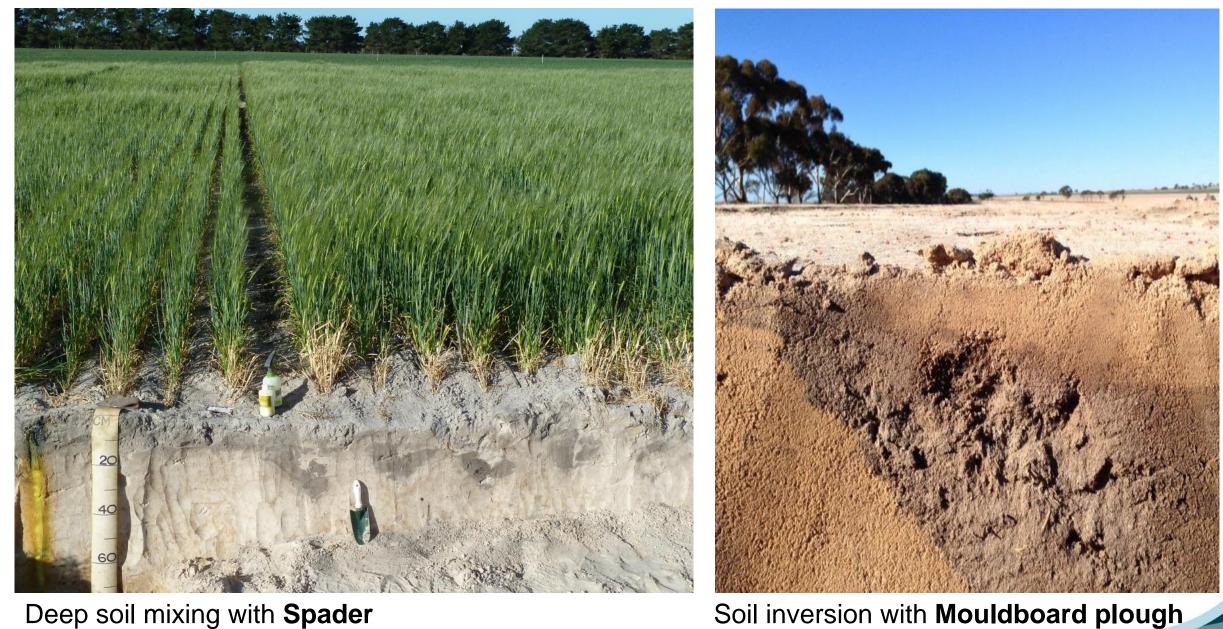
↑ Risk, 90% of cases

Big reductions in O.M, Clay % and CEC ↑ Risk

2) Environmental conditions conducive to damage

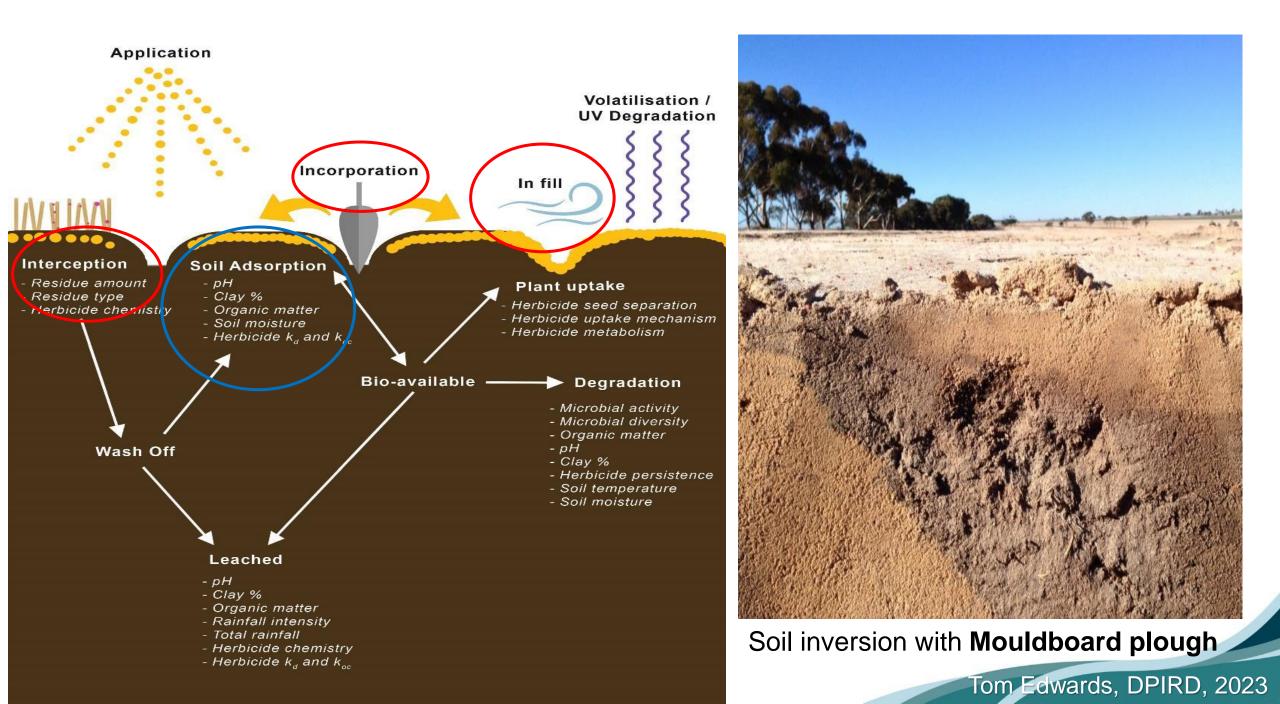
↑ Risk, 30% of cases


First season post deep tillage ↑ Risk

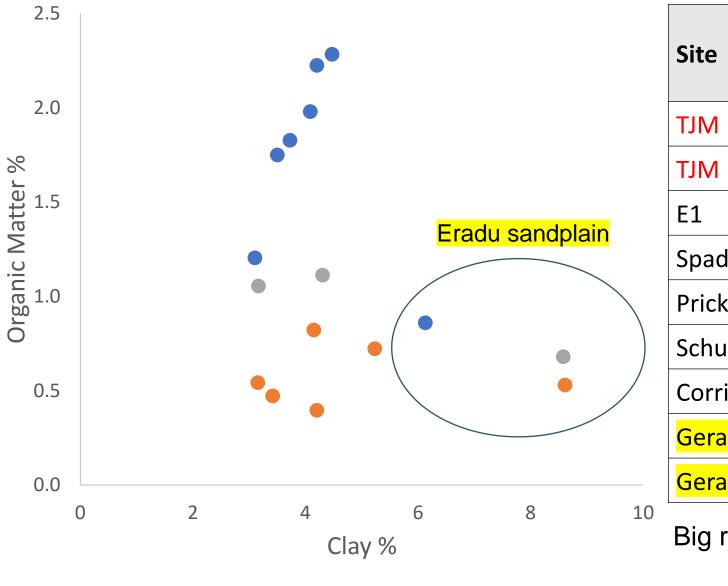

Dry soil at seeding ↑ Risk

Large rainfall events post seeding ↑ Risk

3) Herbicide


Reliant on separation from crop for safety \uparrow Risk Sensitivity to change in soil composition \uparrow Risk High concentration required to achieve weed control \uparrow Risk

Deep soil mixing with Spader



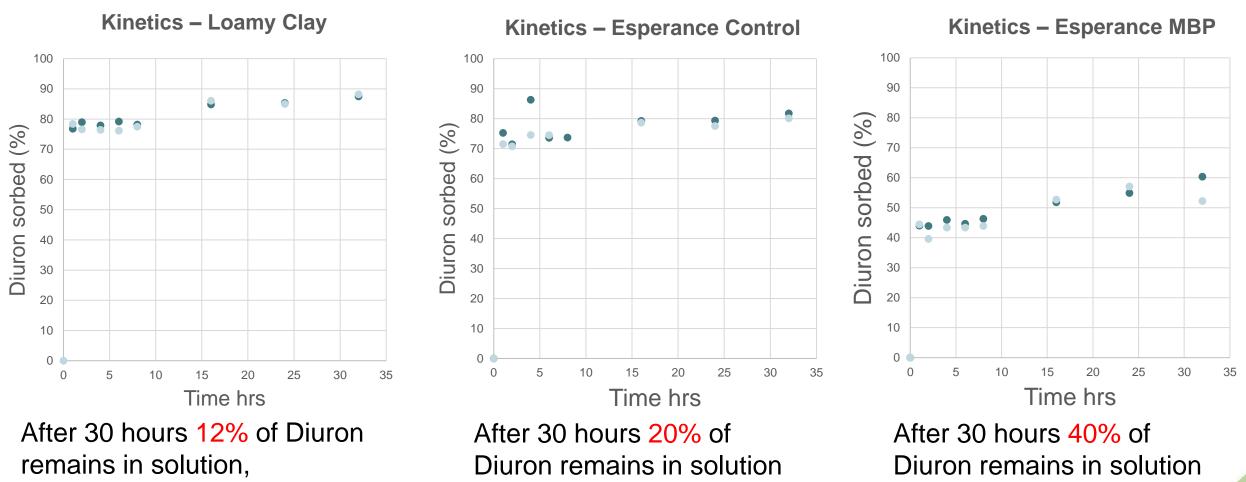
Survey of 214 growers	Inversion Ploughing	Deep Mixing
Adoption 2019-2020	0.31m ha	0.65m ha
Observed <u>herbicide</u> <u>damage</u> post amelioration	26%	23%
Will change <u>herbicide</u> <u>strategy post</u> amelioration	67%	78%

Soil inversion with Mouldboard plough

Soil changes from strategic deep tillage

Control

Spaded

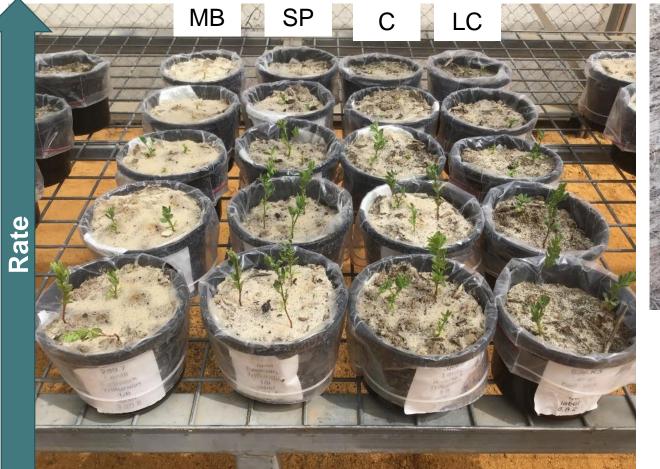

C	Strategic	Percent Change			
Site	deep tillage method	O.M	CEC	Clay %	
MLT	Spaded	-53	-69	-25	
TJM	Mouldboard	-76	-73	-25	
E1	Mouldboard	-74	-84	-8	
Spaded	Spaded	-44	-34	5	
PrickleFarm	Mouldboard	-59	-74	49	
Schutz	Mouldboard	-64	-76	-7	
Corrigin	Mouldboard	-67	-82	35	
<mark>Geraldton</mark>	Spaded	<mark>-21</mark>	<mark>-34</mark>	<mark>40</mark>	
<mark>Geraldton</mark>	Mouldboard	<mark>-38</mark>	<mark>-56</mark>	<mark>40</mark>	

Big reductions in O.M, Clay % and CEC ↑ Risk

Tom Edwards 2023

Soil – Diuron Kinetics

660ng a.i./g soil = 550 g a.i. of Diuron product top 5cm at BD 1.3

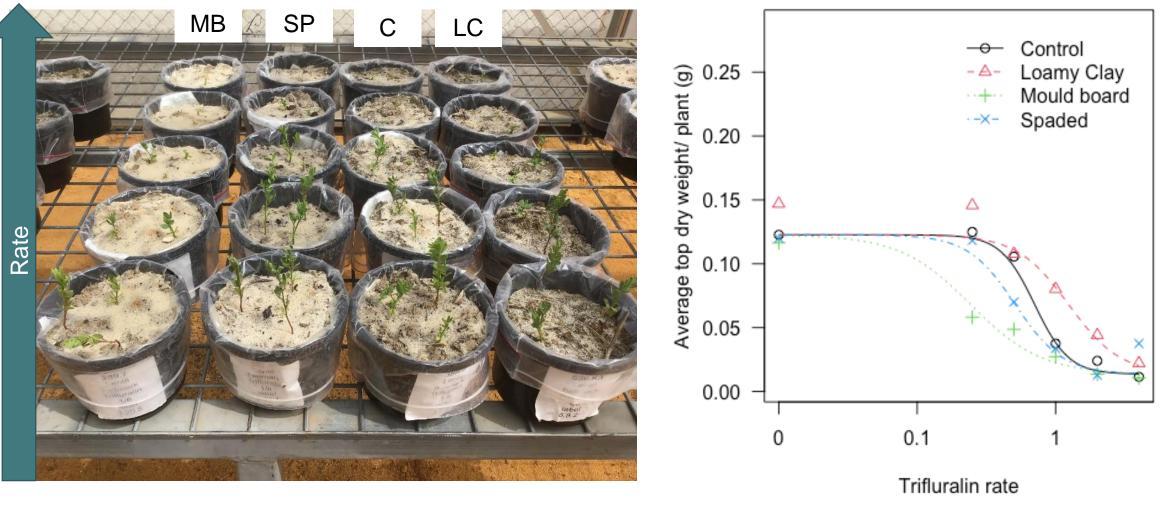

11% Clay, 1.32%O.C

4% Clay, 0.96%O.C

Tom Edwards, DPIRD 2023

3% Clay, 0.27%O.C

Deep tillage can increase herbicide toxicity



Screenhouse Bioassay

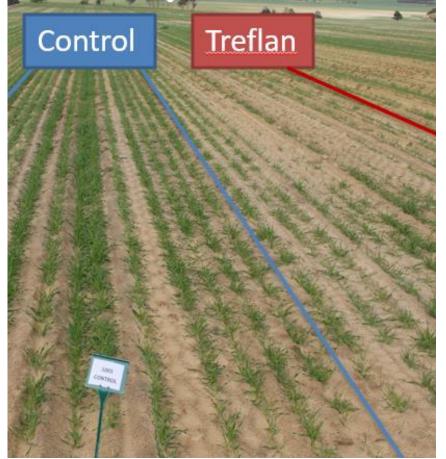
Intact cores from each soil treatment- Spray with a range of herbicide concentrations and sow a sensitive easy to measure species (Lentil cv Bolt)

Trifluralin applied at 5 rates to Lentils in soil cores from MB – Mouldboard, SP – Spaded, C – Control, LC – Loamy clay

Deep tillage can increase herbicide toxicity

Trifluralin applied at 5 rates to Lentils in soil cores from MB-Mouldboard, SP- Spaded, C- Control, LC – Loamy clay

Field trials – impacted by environmental conditions

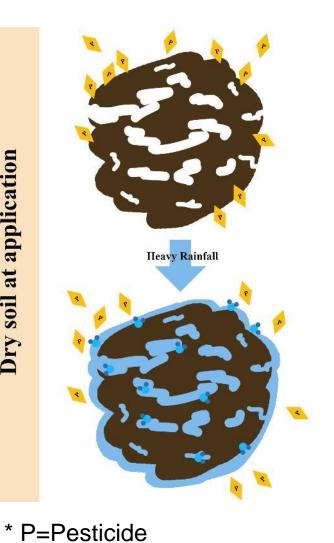

Crop	Number of trials	Growing seasons after amelioration	Significant soil change	Responsive environment	87 43 53 63 78 62 61 700 103 113 127 166 113 83 37 63 63 72 68 62 101 110 119 123 187 143
Wheat	7	1-4	80%	28%	42 67 63 76 63 102 111 120 123 133 147 143 19 63 67 78 63 61 103 112 121 120 123 133 147 143 19 63 67 78 63 61 103 112 121 130 153 157 50 63 77 63 63 103 112 121 130 153 167
Barley	3	1-4	100%	33%	6e 78 67 93 103 114 128 182 101 150 189 163 17 70 70 83 07 103 115 124 163 112 151 160 179 173
Canola	3	1-4	66%	0%	1 20 20 20 107 110 127 191 113 127 191 113 127 114 113 127 114 115 117 114 115 115 115 115 115 115 115 115 115

Poor Herbicide – seed separation

Risk is particularly high in the first season with no stubble and low soil bulk density

Furrow infill Overwatch damage after spading

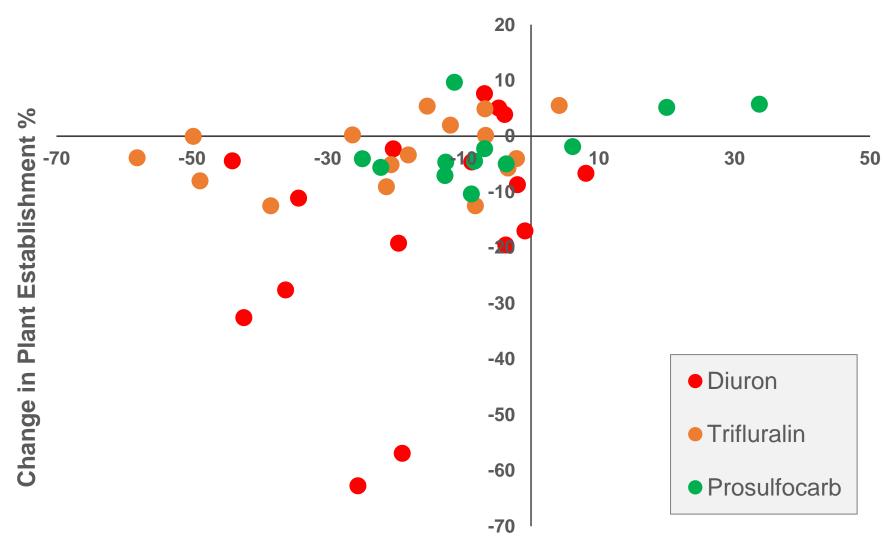
Wind movement and shallow seeding increase trifluralin damage after MBP



Traffic and soil movement increase Boxer Gold damage after MBP

Environmental conditions

Environment Factor and Crop Damage	Corrigin 2017	Corrigin 2018	
Rainfall 30 days pre-sowing	14mm	40mm	ion
Large rainfall events post-sowing	19mm 2 days post	None	Ory soil at application
Annual rainfall	417mm	351mm	Dry se
Herbicide damage	70% yield loss	15% yield loss	* F


Dual phase sorption

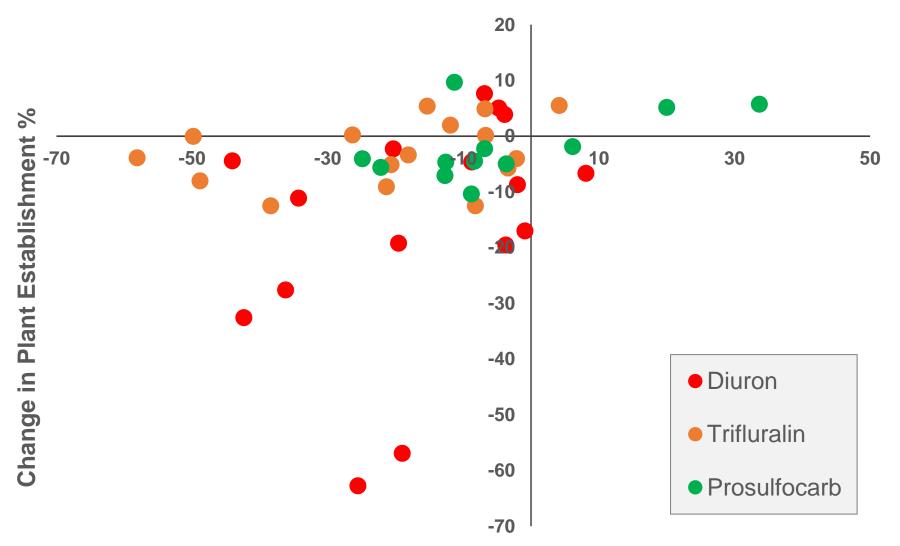
Wet soil at application Heav<mark>y Ra</mark>infall

Herbicide selection

Percent change in wheat establishment and yield following inversion and deep mixing at Esperance and Geraldton, two seasons after amelioration

Change in Yield %

Herbicide Chemistry – consider herbicide characteristics


Trifluralin: Binds tightly to organic matter

Diuron: Significant binding to organic matter. Increased leaching and mobility in low clay and organic matter soils

Prosulfocarb: Slightly mobile, moderate binding to organic matter

Herbicide selection

Percent change in wheat establishment and yield following inversion and deep mixing at Esperance and Geraldton, two seasons after amelioration

Change in Yield %

Herbicide Chemistry – consider herbicide characteristics

Do herbicides rely on physical separation from crop to ensure crop safety?

Is herbicide sorption particularly sensitive to change in soil surface composition (organic matter, clay%, pH or stubble)?

Effective rate for weed control vs safe rate for crop productivity

Herbicide strategy

			Risk of herbicide damage			
			Low	Medium	High	
			Not much change in Soil organic matter or clay content, some surface residue remains, good soil moisture conditions.	Moderate change in either soil organic matter or clay content, little surface residue remains, marginal soil moisture conditions.	Large change in either soil organic matter or clay content, no surface residue remains, poor soil moisture conditions.	
Risk of weed pressure	Low	Low weed density and good weed burial likely.	Normal pre-emergent herbicide regime should be safe to use.	Carefully consider pre- emergent herbicide. Consider not using in first- year post-amelioration.	First year post amelioration consider using no pre-emergent and assess whether post- emergent is needed in year one.	
	Medium	Moderate weed density or very good weed burial likely.	Normal pre-emergent herbicide regime should be safe to use.	Carefully consider pre- emergent herbicide. Consider post-emergent options.	If possible, use a robust post- emergent in year one and no pre-emergent.	
	High	High weed density or good weed burial unlikely.	Normal pre-emergent herbicide regime should be safe to use.	Carefully consider pre- emergent herbicide. Consider post-emergent options.	Consider a combination of a chemical tolerant crop variety and post emergent herbicide to avoid using a pre-emergent.	

Herbicide strategy – wheat example*

			Risk of herbicide damage			
			Low	Medium	High	
			Not much change in soil organic matter or clay content, some surface residue remains, good soil moisture conditions.	Moderate change in either soil organic matter or clay content, little surface residue remains, marginal soil moisture conditions.	Large change in either soil organic matter or clay content, no surface residue remains, poor soil moisture conditions.	
Risk of weed pressure	Low	Low weed density and good weed burial likely	Any recommended herbicide	Pyroxasulfone Pyroxasulfone + Prosulfocarb	Prosulfocarb Post Trifluralin 1L+ Prosulfocarb	
	Medium	Moderate weed density or v. good weed burial likely	Terrain + Triallate Overwatch +Callisto	Pyroxasulfone + Callisto Trifluralin 1L+ Triallate	Pyroxasulfone + Triallate Mateno post	
	High	High weed density or good weed burial unlikely	Overwatch+ Voraxor Prosulfocarb + Jaguar post	Overwatch Mateno Post Pyroxasulfone + Callisto	Imi tolerant variety Late winter amelioration and cover crop	

* Note: general advice based on a small number of research trials, individual results may vary.

Take Home Messages

Mouldboarding and spading can increase the risk of pre-emergent herbicide damage

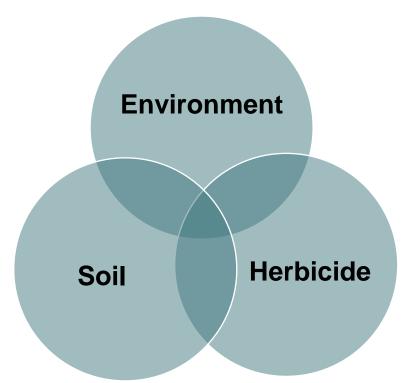
Difficult to generalise but can identify factors that increase risk:

1) Soil composition change post-tillage

↑ Risk, 90% of cases

Big reductions in O.M, Clay % and CEC ↑ Risk

2) Environmental conditions conducive to damage


↑ Risk, 30% of cases

Dry soil at seeding ↑ Risk

Large rainfall events post seeding ↑ Risk

3) Herbicide

Reliant on separation from crop for safety \uparrow Risk Sensitivity to change in soil composition \uparrow Risk High concentration required to achieve weed control \uparrow Risk

Acknowledgements

GRDC DPIRD project DAW1901-006RTX

Increasing farming system profitability and longevity of benefits following soil amelioration

Esperance DPIRD

Sam Richards Chris Matthews McKenzie Layman David Hall Tony Dixon Northam DPIRD Kanch Azam Kim Tanlamai Deb Barker Sultan Mia Dave Nicholson **Geraldton DPIRD** Steve Davies Melanie Kupsch Andrew Blake Erin Hampson Ranny Wilkins

Murdoch Uni and NSW DPI Ron Yates Mick Rose John Howieson Graham O'Hara Ben Arthur Chris Poole Emma Steel Rob Harrison

Department of **Primary Industries and Regional Development**

GOVERNMENT OF WESTERN AUSTRALIA

Department of Primary Industries GRAINS RESEARCH & DEVELOPMENT CORPORATION

GRDC